You can fast-track your DASCA credentialing process if you're a student or alumnus of a DASCA-accredited/ recognized institution.
Read moreIn support of our mission to empower data analysts, scientists and engineers, we’ve introduced two platforms – Data Science Current and Data Engineering Digest – offering curated content tailored to your professional needs. These platforms provide expert insights, the latest industry trends, and personalized updates to help you stay informed and ahead in the data science field.
Sign up today to customize your experience and receive newsletters with cutting-edge content, expert interviews, and exclusive updates.
Exclusive blogs that discuss the latest innovations and breakthroughs in the world of Data Science. Stay ahead with expert insights that drive industry change.
Explore the latest trends, innovative practices, and cutting-edge technologies shaping Data Science today.
Engage with top industry experts as they discuss real-world applications, key challenges, and the future of Data Science. Gain deep insights to elevate your expertise.
Share your expertise with the global DASCA community. Contribute insights and establish yourself as a thought leader in Data Science.
Stay informed with the latest DASCA announcements, industry news, and upcoming events.
Explore DASCA’s comprehensive certification paths tailored for professionals in:
Validate your expertise in designing, building, and managing Big Data infrastructure.
ABDE™ Brochure SBDE™ BrochureMaster the tools and techniques for advanced data analysis and insight generation.
ABDA™ Brochure SBDA™ BrochureBecome an expert in data science methodologies and applications.
SDS™ Brochure PDS™ BrochureChoose your qualification and experience level to find the DASCA certification that aligns with your career goals.
Learn about the steps to earn your DASCA certification, from application to becoming a certified professional.
DASCA certification exams are available online worldwide, accessible in 180+ countries with 5th-generation TEI technology.
Find answers to common questions about DASCA certifications, exam process and policies.
Showcase your DASCA certification with digital badges recognized worldwide.
Discover how DASCA Accreditation enhances data science and AI education, ensuring global recognition and academic excellence.
Understand how DASCA Accreditation sets the benchmark for excellence in data science and AI education, aligning institutions with global industry standards.
Examine the framework that upholds high benchmarks for curriculum, faculty expertise, and industry relevance in data science and AI programs.
Understand the institutional and program-level requirements to assess your readiness for pursuing DASCA Accreditation.
Explore the step-by-step process to achieve DASCA Accreditation through a rigorous, globally benchmarked, and digitally powered evaluation.
Discover how DASCA Accreditation enhances institutional reputation, academic quality, and global competitiveness in data science and AI education.
Access comprehensive guides, support tools, and subsidy programs designed to assist institutions throughout their accreditation journey.
Learn about the global network of academic and industry experts who support institutions in delivering high-quality data science and AI education.
Get answers to common questions about institutional eligibility, the accreditation process, ongoing compliance and more.
Begin your DASCA accreditation journey and position your institution among global leaders in data science and AI education.
Join the rapidly growing DASCA network of leading tech schools, higher education institutions, IT training companies, and government organizations. Partner with DASCA to prepare your students and professionals for globally recognized data science certifications. Start your partnership journey today.
Know moreGet your academic programs DASCA accredited and join an elite group of institutions shaping the future of data science. Leverage the World Data Science & AI Initiative's subsidy program to strengthen your academic offerings.
Read More>Get your teams DASCA-certified and ensure they meet global standards in data science. Partner with us to drive sustainable skills development and long-term growth for your organization.
Read More>Offer training programs that prepare candidates for DASCA certification exams. Position your academy as a trusted provider of exam-focused education for aspiring data science professionals.
Read More>Collaborate with DASCA to promote standards-based data science education. Align your curriculum with DASCA’s globally recognized framework and contribute to advancing the field’s future.
Read More>The DASCA Body of Knowledge and the Essential Knowledge Framework (EKF™) define the most rigorous standards for professional excellence in Data Science. Together, they ensure that DASCA certifications reflect the highest levels of competency and expertise for data professionals.
Read moreThe DASCA Body of Knowledge serves as the foundation for all DASCA certifications, ensuring each credential reflects deep, industry-wide standards of excellence in data science and analytics.
The Essential Knowledge Framework (EKF™) outlines the authoritative skills and knowledge required for data science professionals, providing a clear, structured path to achieving DASCA certifications.
DASCA sets industry-leading standards, frameworks, certifications, and accreditation programs to develop skilled Big Data analysts, engineers, and data scientists.
Uncover DASCA’s dynamic Credentialing Framework, which reinforces industry leadership through its Essential Knowledge Framework (EKF™) and Data Science body of knowledge.
Learn about DASCA’s governance structure, ensuring neutrality, independence, and adherence to the highest credentialing standards.
Commit to integrity in data science. Discover the principles that guide DASCA-certified professionals in ethical, responsible, and transparent practices.
Explore how Big Data is transforming industries globally, driving innovation, and creating new opportunities across sectors.
Discover the emerging career tracks in Data Science and how professionals are adapting to the rapidly evolving data landscape.
DASCA’s pioneering credentials for data analysts, data engineers, and data scientists are cross-platform, vendor-neutral, and adaptable across a wide range of industries and operational levels. Our certifications equip professionals with the skills they need to excel in today’s dynamic data landscape, ensuring they are prepared for diverse roles in data-driven environments.
Explore how DASCA certifications prepare you for roles in diverse industries, providing cross-platform skills and vendor-neutral expertise.
Equip yourself with globally recognized credentials to start your career in data science on the right foot.
Get your institution DASCA-accredited to join the league of the leading global Data Science educators.
Discover how DASCA-certified professionals bring value to your organization with advanced data science skills.
Start your data science journey with DASCA. Whether you're an individual pursuing certification, an institution seeking DASCA accreditation, or an organization exploring partnership, the process is simple and entirely online to help you achieve your goals.
For any questions about certifications, partnerships, or DASCA accreditation, feel free to get in touch.
Stay up to date with DASCA’s latest announcements and developments. Explore press releases, certification updates, expert insights on data science trends, and learn about DASCA’s global initiatives.
Clustering plays a crucial role in analyzing data, making predictions and controlling the anomalies in the datasets. Identical or correlated attributes in a dataset are classified as a group using reiterative techniques and tools to create Clusters.
While the concept of clustering appeared to turn tough for some with the advent of K-means clustering - or - vector quantization;. the enterprising welcomed K-means clustering because it is indeed one of the easiest unsupervised learning algorithms to solve the problem of clustering among datasets.
At its simplest, K means clustering is a process of classifying objects into different clusters so that they are as much familiar as possible within the group, but as much dissimilar as possible with the other groups.
Also known as vector quantization, it is a process that splits up in a special way, n observations into k clusters with each cluster belonging to the nearest mean. Alternately, K-means can also be seen as a way of creating a dictionary of k vectors in a way that any data vector (say x) can be plotted to a code vector to minimize errors in future reconstruction of the same dictionary.
K-means is a surprisingly useful Unsupervised Learning Algorithms (ULA) – something without which Machine Learning just can’t move any further now, as machines need to learn deep hierarchies, and K-means does help in the job by extracting facts and figures through training a model of unlabeled data.
An unsupervised learning problem doesn’t come with labels. Andrew Ng, chief scientist at Baidu and professor at Stanford University, explains the K-means algorithm by using a training set and further clustering the data into organized groups. Initializing with random cluster centroids (take k as the number of clusters that you want to find further allotting (mu) to cluster centroids), one could choose k training examples, randomly setting the value of cluster centroids equal to the value of k- assigning each training set to the nearest cluster centroid.
As a last step, move the cluster centroids to the mean of the points assigned to it. K-means algorithms converge, undoubtedly stabilizing the cluster centroids which is explained by Ng by a distortion function (in a distortion functions, the value of k should be such that distortion should remain constant even if the value of k is increased)
With this algorithm well defined, not moving on to its applications and experiments would be unfair. K-means clustering is computationally faster than traditional or hierarchical clustering while dealing with large datasets.
Some Use Cases
For example, if you are a realtor, there’s a chance that you would want to have your offices or sales teams closest to the highest-priced properties. K-means clustering can help you group these locations into clusters and define a cluster center (centroid) for each cluster, which will be the locations where you can consider opening your offices. These centroids will be at a minimum distance from all the points of a particular cluster – with locations having highest-priced properties, therefore, your properties will be at a minimum distance from all the potentially highly lucrative area within a cluster. Similarly, you can also use K-means for foot-printing locations with maximum sales action.
K-means clustering can also be applied to applications based on wireless sensor networks including landmine detection systems. Applying this algorithm in customer segmentation by assigning a real vector value to every customer and then looking at each customer separately, can be used to obtain effective results.
Lloyd’s algorithm or K-means clustering is undoubtedly one of the easiest, but also one of the most effective algorithms as well. It has the potential of solving even the more complex of clustering problems in the near future with its other subsets, e.g., parallel K-means data clustering and a lot more.
So be it IoT, artificial intelligence or even plain data science applications, K-means clustering should add to your list of skills to have, if you want to grow into bigger and more challenging roles. And remember, it’s a complicated skill that needs you to have a solid proof to show to employers that you really do know enough of the art of K-means. So just invest some time and get yourself an international data science certification.
This website uses cookies to enhance website functionalities and improve your online experience. By browsing this website, you agree to the use of cookies as outlined in our privacy policy.