You can fast-track your DASCA credentialing process if you're a student or alumnus of a DASCA-accredited/ recognized institution.
Read moreShare your expertise with the global DASCA community. Contribute insights and establish yourself as a thought leader in Data Science.
Stay informed with the latest DASCA announcements, industry news, and upcoming events.
Exclusive blogs that discuss the latest innovations and breakthroughs in the world of Data Science. Stay ahead with expert insights that drive industry change.
Explore the latest trends, innovative practices, and cutting-edge technologies shaping Data Science today.
Engage with top industry experts as they discuss real-world applications, key challenges, and the future of Data Science. Gain deep insights to elevate your expertise.
Explore DASCA’s comprehensive certification paths tailored for professionals in:
Validate your expertise in designing, building, and managing Big Data infrastructure.
ABDE™ Brochure SBDE™ BrochureMaster the tools and techniques for advanced data analysis and insight generation.
ABDA™ Brochure SBDA™ BrochureBecome an expert in data science methodologies and applications.
SDS™ Brochure PDS™ BrochureChoose your qualification and experience level to find the DASCA certification that aligns with your career goals.
Learn about the steps to earn your DASCA certification, from application to becoming a certified professional.
DASCA certification exams are available online worldwide, accessible in 180+ countries with 5th-generation TEI technology.
Find answers to common questions about DASCA certifications, exam process and policies.
Showcase your DASCA certification with digital badges recognized worldwide.
Discover how DASCA Accreditation enhances data science and AI education, ensuring global recognition and academic excellence.
Understand how DASCA Accreditation sets the benchmark for excellence in data science and AI education, aligning institutions with global industry standards.
Examine the framework that upholds high benchmarks for curriculum, faculty expertise, and industry relevance in data science and AI programs.
Understand the institutional and program-level requirements to assess your readiness for pursuing DASCA Accreditation.
Explore the step-by-step process to achieve DASCA Accreditation through a rigorous, globally benchmarked, and digitally powered evaluation.
Discover how DASCA Accreditation enhances institutional reputation, academic quality, and global competitiveness in data science and AI education.
Access comprehensive guides, support tools, and subsidy programs designed to assist institutions throughout their accreditation journey.
Learn about the global network of academic and industry experts who support institutions in delivering high-quality data science and AI education.
Get answers to common questions about institutional eligibility, the accreditation process, ongoing compliance and more.
Begin your DASCA accreditation journey and position your institution among global leaders in data science and AI education.
Join the rapidly growing DASCA network of leading tech schools, higher education institutions, IT training companies, and government organizations. Partner with DASCA to prepare your students and professionals for globally recognized data science certifications. Start your partnership journey today.
Know moreGet your academic programs DASCA accredited and join an elite group of institutions shaping the future of data science. Leverage the World Data Science & AI Initiative's subsidy program to strengthen your academic offerings.
Read More>Get your teams DASCA-certified and ensure they meet global standards in data science. Partner with us to drive sustainable skills development and long-term growth for your organization.
Read More>Offer training programs that prepare candidates for DASCA certification exams. Position your academy as a trusted provider of exam-focused education for aspiring data science professionals.
Read More>Collaborate with DASCA to promote standards-based data science education. Align your curriculum with DASCA’s globally recognized framework and contribute to advancing the field’s future.
Read More>The DASCA Body of Knowledge and the Essential Knowledge Framework (EKF™) define the most rigorous standards for professional excellence in Data Science. Together, they ensure that DASCA certifications reflect the highest levels of competency and expertise for data professionals.
Read moreThe DASCA Body of Knowledge serves as the foundation for all DASCA certifications, ensuring each credential reflects deep, industry-wide standards of excellence in data science and analytics.
The Essential Knowledge Framework (EKF™) outlines the authoritative skills and knowledge required for data science professionals, providing a clear, structured path to achieving DASCA certifications.
DASCA sets industry-leading standards, frameworks, certifications, and accreditation programs to develop skilled Big Data analysts, engineers, and data scientists.
Uncover DASCA’s dynamic Credentialing Framework, which reinforces industry leadership through its Essential Knowledge Framework (EKF™) and Data Science body of knowledge.
Learn about DASCA’s governance structure, ensuring neutrality, independence, and adherence to the highest credentialing standards.
Commit to integrity in data science. Discover the principles that guide DASCA-certified professionals in ethical, responsible, and transparent practices.
Explore how Big Data is transforming industries globally, driving innovation, and creating new opportunities across sectors.
Discover the emerging career tracks in Data Science and how professionals are adapting to the rapidly evolving data landscape.
DASCA’s pioneering credentials for data analysts, data engineers, and data scientists are cross-platform, vendor-neutral, and adaptable across a wide range of industries and operational levels. Our certifications equip professionals with the skills they need to excel in today’s dynamic data landscape, ensuring they are prepared for diverse roles in data-driven environments.
Explore how DASCA certifications prepare you for roles in diverse industries, providing cross-platform skills and vendor-neutral expertise.
Equip yourself with globally recognized credentials to start your career in data science on the right foot.
Get your institution DASCA-accredited to join the league of the leading global Data Science educators.
Discover how DASCA-certified professionals bring value to your organization with advanced data science skills.
Start your data science journey with DASCA. Whether you're an individual pursuing certification, an institution seeking DASCA accreditation, or an organization exploring partnership, the process is simple and entirely online to help you achieve your goals.
For any questions about certifications, partnerships, or DASCA accreditation, feel free to get in touch.
Stay up to date with DASCA’s latest announcements and developments. Explore press releases, certification updates, expert insights on data science trends, and learn about DASCA’s global initiatives.
In the land of DataBase Administrators (DBAs) struggling with NoSQL and Informatica Warehouses, the Big Data Engineer who can successfully architect, construct and govern an enterprise data lake, either on-premise or even better, in the public or hybrid cloud, is king. But a lake shouldn’t be a swamp, and the superlative big data engineer knows the difference. In an enterprise, structuring the ingestion, storage, cleansing and overall pre-processing of non-structured, non-relational data formats and then ensuring seamless transportation of the same to different teams and departments requires nothing less than a maverick team. But not everyone’s born a maverick, and learning the entire data lake concept, architecture and governance is a tall order unless you know the essentials of a data lake, and have the wherewithal to plan the architecture of one. Here’s a ground-up view of the mystical data repositories we call lakes, but are probably more akin to oceans.
What is a data lake?At its very essence, a data lake is data infrastructure that:
The importance of data lakes has grown significantly as well. A Forrester research report suggests that insight-driven businesses are growing 30% faster than their industry counterparts.
The need for data lakes in the big data eraThe massive amounts of data being generated in the Big data era called for the formation of data lakes. The erstwhile relational schema-on-write data warehouses and relational database management systems (RDBMSs) simply could not handle the variety, velocity and volume of data being generated and demanded by businesses. What was needed was a system that could continuously ingest data, store it, and offer real-time schema-on-read capabilities from a wide variety of data formats, for real-time processing and analysis. With the advent of Hadoop and NoSQL servers, data could be ingested and processed without increased pressure on computing resources.
The economics of the data lake cannot be overstated either! Bare-metal servers, collocated clouds and commodity hardware have made the storing of enterprise data a breeze.
Data lake architectureThe architecture of a data lake includes several layers. Typically, the following are the components, in sequence of their functioning:
Ingestion - This refers to all forms of inputs into the data lake and usually contains commercial or open-source tools. Examples include Apache Kafka, Cloudera Morphlines and Amazon Kinesis. The most important aspect to keep at the forefront of your choice is the elasticity of the ingestion tool, and its ability to ingest streaming data.
Storage - This essentially is the “lake” in the data lake. Storage is not structured and files are in native formats, incorporating massively parallel processing (MPP). These include NoSQL databases that can be housed in commodity hardware, extremely cost-effective public or hybrid clouds, or even bare-metal servers in the enterprise’s own data center. The current trend is one of colocation and the use of hybrid clouds.
Data Preprocessing and Metadata - In the lake, metadata is maintained using several frameworks and tools. Metadata is used to identify and classify the data in the lake, and while it is not as structured as in a warehouse, it is certainly useful to acquire the correct data required for processing and modelling.
App Layer and Consumption - Once the data lake is prepared, the schema-on-read principle is used. The stored data is identified by the associated metadata and classification, and pulled out to the application layer for modelling or visualization, based on the needs of the enterprise. In most cases, these also happen in near real-time.
Data lakes are some of the most expensive insights-related storage projects undertaken by companies across the world, a fact corroborated by many industry experts. However, most such projects fail even while using famed service providers, because of the lack of understanding of the nature of data flow into and out of the data lake infrastructure. As the volume of business data keeps snowballing, more enterprises are seeking out skilled and certified Big Data Engineers for their Data Lake projects.
This website uses cookies to enhance website functionalities and improve your online experience. By browsing this website, you agree to the use of cookies as outlined in our privacy policy.